Programming for the Real-World
(Embedded Systems)

SDP Workshop
Nashville, TN
Dec 13, 14 2001



Participants

* Robert Laddaga
(leader)

e Paul Robertson
o Scott Smolka
e Mitch Kokar

e David Stewart
e Brian Williams

Insup Lee
Kang Shin
John Reekie
Rajeev Alur

With help from:

— Dave Sharp
— Calton Pu



Questions

What can’t we do

What are the promising technologies

How can we enhance and extend current technologies
How can we do technology transfer

How can we spend $.5B/year

Specific sellable ideas

How to build for change

How to exploit legacy SW

What are our Basic Assumptions — challenges and threats



Outline

Notable Progress

What we can’t do

What we can’t do (tech speak)
Promising Technology



Notable Progress

Use of tools

Use of real-time operating systems
Memory/Computation constrained
Fault tolerant protocols
Scheduling single processors
Testing and validation



What we can't do

high level sensing

Infer decision crucial info from multiple disparate
sources

Competent transfer of control (human or automated)

automate our mechatronic miracles
(e.q.. UCAV, FCS, Space-Vehicles)

make embedded systems invisible—ultra stable.
certify embedded systems for less than ${gag} .

trust our embedded software-
especially safety critical and novel systems.

adapt to changing reguirements/environment.



Unsolved Problems

Uncertainty and model selection
Hardware/Software co-design
Testing & Validation

Meeting non-functional constraints in integrated
systems.

Use of models in integration

Sensing Environment and Adaptive (resource
allocation, dynamic and adaptive)

Can’'t automate what we know how to do



More Unsolved Problems

Distributed dynamic resource allocation.
~ault management.
Handle harsh environments cost effectively.

Encoding and measuring functional
redundancy.




Promising Technologies

Model based software devel opment

Non-functional reasoning of embedded SW
devel opment

Model Selection and Estimation
Temporal Decision Theoretic Embedded
L anguages

Self adaptive software

Synthesis

Model-based Programming of Embedded
Software



Promising Technologies - Format

e Whatitis
* Research Agenda
 How It helps



M odel-based software devel opment

Begin with informal requirements

Capture requirements in a model serving as
a specification of the system

L ots of different modeling paradigms
(ptolemy, ssmulink, charon)

Model refinement and requirements tracing
Code Generation
Model based testing and validation



MBSD — Research Agenda

Closing consistency gap between model and code —
preservation of structural features of design in code.

Trandlating informal requirements into formal
requirements

Tracing requirements into implementation

How can we include disparately modeled submodels
Enriched formalisms supporting non functional aspects
More efficient testing

Capture of distributed embedded systems

Models including uncertainty

Self adaptive models



MBSD — how it helps

e Certification for lower dollars
— Streamlining testing
— Early bug discovery
— Validation techniques
e Trust of embedded software
— Improved certification, reliability,
understandability

e |nvisible — ultrastable



Modda Selection & Estimation

e Technigues for ssmultaneous estimation of
model parameters and comparing alternate
models



MSE — Research Agenda

Algorithms, optimization and approximation
techniques to allow tractable computation along
with realistic dependency assumptions

Estimation over large distributed spaces

Integration of multiple model representations —
models include constraints, logic, bayes nets,
HMM, ODE

How to seamlesdly fold methods for MSE into
embedded languages



MSE — how It helps

e |nfo fusion

— Integrates vastly distributed information
sources

e Detection of incipient states
— Helps to detect masked states



Temporal Decision theoretic
Embedded L anguages

 Tracking large numbers of execution
traectories

* Planning using expected values

e Dynamic technique involving On-line:
— Tracking
— Projection
— Execution
— replanning



TDTEL — Research Agenda

How to decide which unlikely trajectories to track

How to project forward conseguences of traced
trajectories to ensure safety

On-line model checking

How to fold TDT Planning and execution into
embedded languages

How dowe do TDT Planning at reactive timescale

How do we concurrently do planning and
execution on line.



TDTEL — How it helps

« Automation and adaptation
— Dynamic planning
— recovery



Non-functional reasoning of embedded
software devel opment

Bottom up approach to produce reliable
components and building blocks — including
functional and non-functional description and

assurance

HW/SW Codesign — software redesign and reconfiguration
Reliable device drivers — reliable interfaces to unreliable hardware
Component specification — resource all ocation under scarcity

Aspect oriented software development — performance monitoring

Non functional constraints — imprecise computation, uncertainty, fault
tolerance issues

Low bit rate networking protocols
Trade-off analysis

Configurable hardware
Application level



Salf-adaptive Software

e What it is:
— Monitor detect and repair in response to faults and
changes by modifying/resynthesizing program.
— Feedback/Control-system-like

e Examples:
— Networks of cooperating air vehicles.
— Reconfiguration of hardware within vehicles and submarines.
— Adaptation of control laws for flight surfaces.
— Adaptation of numerical codes for optimization or simulation.

— Adaptation of assumptionsto track changing conditions during
high level sensing (vision, speech).



SAS — Research Agenda

Investigate ways of ensuring stability.

Investigate ways of ensuring that the high level goals of
the system are met — the set point.

Investigate how to represent models and monitor models
for different classes of systems.

Investigate ways of performing program synthesis.

Investigate how to achieve acceptable performance (good
enough soon enough, QoS metrics)

Architectures and design of Self-adaptive software.

Design languages that incorporate ideas of sensing and
adaptation.



Saf-Adaptive Software

e What problems it addresses:
— High level sensing
— Adaptation
— Automation

* Why It solves the problems:

— Divides a complex space into smaller tractale
Ones.

— Control systems are inherent engineering
artifacts. Embedded systems control physical
systems and are inherently control system-like.



Synthesis

e What it IS;
— Automatic code generation from specifications,
models, design rules.



Synthesis - Research Agenda

Dealing with uncertainty and hidden states.

Automatic generation of monitor code from models.
Model Fitting.

How to bring focused synthesis online.

Integration of offline compilation with online reasoning.
Dealing with optimality and feasibility.

Dealing with functional redundancies and contingencies.
Dealing with dynamically changing components.
Resource all ocation/constraints.



Synthesis

 What problems it addresses:
— Supports self-adaptive software model-based
programming
— Adaptation
— Assured low-level components.
 Why It solves problems:

— Allows software to be generated dynamically (at
runtime).

— Provides for automatic verification.
— Improves confidence vs. Human coding.



Model-based Programming of Embedded
Software

e Whatitis
Embedded |anguages that:

— Encode strategic guidance and incorporate
models of the environment

— Use these descriptions to automatically
Interpret and coordinate environmental
Interactions.



MPES. Research Agenda

Seaml ess extension of embedded |anguages to:
— Incorporate rich models of the embedded environment.

— Shift the role of a program from an imperative to an
advisory role

Fast on-line reasoning for managing interactions,
Including: State estimation, environment reconfiguration,
planning, scheduling, discrete event control and continuous
control.

Automated partitioning of coordination between

run-time and compile-time tasks.

Frameworks for incorporating and reasoning from
arich set of modeling formalisms.



MPES:. How It helps

o Simplifies programming for autonomy by
— Offering asimpler model of interaction between the programmer
and the environment
— By delegating reasoning about interactions to the language’ s
Interpreter/compiler.
* |mproves robustness for autonomy by

— Systematically consider a wider set of possible interactions and
reSPONSES.

— Responding to novel events on-line.
— Employing provably correct algorithms.

o Supports adjustable levels of autonomy by

— Allowing the programmer to delegate the desired level of control
authority within the control program.



